读书学习网_高中生学习方法与技巧_知识点总结_读书名言_读书笔记心得体会分享推荐
顶部通栏
首页 > 高考学习 > 高中数学 > 等差数列求和公式有哪些 推导方法有几种 >
首页 资讯 一对一 知识点 试题 大学库 专业 学习 助考 作文 机构 问答 报考 励志

等差数列求和公式有哪些 推导方法有几种

栏目:高中数学时间:2019-06-23

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。数列求和对按照一定规律排列的数进行求和,那么,等差数列求和公式有哪些呢?下面和小编一起来看看吧!

等差数列求和公式有哪些 推导方法有几种

等差数列求和公式及推论

公式:

Sn=n(a1+an)/2

Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n

等差数列基本公式:

末项=首项+(项数-1)×公差

项数=(末项-首项)÷公差+1

首项=末项-(项数-1)×公差

和=(首项+末项)×项数÷2

末项:最后一位数

首项:第一位数

项数:一共有几位数

和:求一共数的总和

推论:

(1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

(2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。

(3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。

证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。

等差数列求和常用方法

分组求和:把一个数列分成几个可以直接求和的数列.

拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.

错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和选自.网上补课 www.dushuv.com

倒序相加:例如,等差数列前n项和公式的推导.

智能推荐

相关高中数学

推荐高中数学

重点栏目推荐

高中语文 高中数学 高中英语 高考文综 高中历史 高中地理 高中政治 高考理综 高中物理 高中化学 高中生物
触屏版 电脑版

© 2017 读书学习网.dushuv -高中学习和高考升学平台!

顶 ↑ 底 ↓