读书学习网_高中生学习方法与技巧_知识点总结_读书名言_读书笔记心得体会分享推荐
顶部通栏
首页 > 高考学习 > 高中数学 > 等差数列求和公式 推导方法有哪些 >
首页 资讯 一对一 知识点 试题 大学库 专业 学习 助考 作文 机构 问答 报考 励志

等差数列求和公式 推导方法有哪些

栏目:高中数学时间:2019-06-23

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。那么,等差数列求和公式有哪些呢?下面小编整理了一些相关信息,供大家参考!

等差数列求和公式 推导方法有哪些

等差数列求和公式有哪些

Sn=n(a1+an)/2

Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n

等差数列基本公式:

末项=首项+(项数-1)×公差

项数=(末项-首项)÷公差+1

首项=末项-(项数-1)×公差

和=(首项+末项)×项数÷2

末项:最后一位数

首项:第一位数

项数:一共有几位数

和:求一共数的总和

等差数列推论

(1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

(2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。

(3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(选自.1对1辅导 www.dushuv.com n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。

证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。

(4)其他推论:

① 和=(首项+末项)×项数÷2;

②项数=(末项-首项)÷公差+1;

③首项=2x和÷项数-末项或末项-公差×(项数-1);

④末项=2x和÷项数-首项;

⑤末项=首项+(项数-1)×公差;

⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。

智能推荐

相关高中数学

推荐高中数学

重点栏目推荐

高中语文 高中数学 高中英语 高考文综 高中历史 高中地理 高中政治 高考理综 高中物理 高中化学 高中生物
触屏版 电脑版

© 2017 读书学习网.dushuv -高中学习和高考升学平台!

顶 ↑ 底 ↓